

 1

DELIVERABLE 3.2

LINKED RESOURCE MODEL

PERICLES - Promoting and Enhancing Reuse of Information
throughout the Content Lifecycle taking account of Evolving

Semantics

 [Digital Preservation]

GRANT AGREEMENT: 601138

SCHEME FP7 ICT 2011.4.3

Start date of project: 1 February 2013

Duration: 48 months

DELIVERABLE 3.2
LINKED RESOURCE MODEL

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination level

PU PUBLIC X

PP Restricted to other PROGRAMME PARTICIPANTS
(including the Commission Services)

RE RESTRICTED

to a group specified by the consortium (including the Commission Services)

CO CONFIDENTIAL

only for members of the consortium (including the Commission Services)

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 2 / 39

wŜǾƛǎƛƻƴ IƛǎǘƻǊȅ

V # Date Description / Reason of change Author

V0.9 03/06/14 Initial Draft Xerox

v1.0a 25/06/2014 alpha release. Integrates feedbacks and
contributions by KCL and CERTH

Xerox

v1.0 30/06/2014 Final draft Xerox

v1.1 22/07/2014 Version integrating feedback from
PERICLES internal reviewers

Xerox

CERTH

v1.2 31/07/2014 Final version Xerox

!ǳǘƘƻǊǎ ŀƴŘ /ƻƴǘǊƛōǳǘƻǊǎ

Authors

Partner Name

Xerox Jean-Yves Vion-Dury

Xerox Nikolaos Lagos

Xerox Jean-Pierre Chanod

Contributors

Partner Name

KCL Simon Waddington

CERTH Efstratios Kontopoulos

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 3 / 39

/ƻƴǘŜƴǘǎ

GlossaryΧΧΧΦс

1 Executive Summary .. 6

2 Introduction & Rationale .. 7

2.1 Context of this Deliverable Production .. 7
2.2 What to expect from this Document ... 7

3 Rationales and Guiding Principles ... 8

4 State of The Art.. 11

4.1 Aims and objectives .. 11
4.2 Generic properties .. 11
4.3 Preservation ... 12
4.4 Systems and software .. 13
4.5 Probabilistic notions .. 14
4.6 Policy .. 15
4.7 Discussion .. 15

5 Detailed Description of the LRM ... 17

5.1 Ontology Preamble, Namespaces.. 17
5.2 Digital Resource and associated Descriptors ... 17
5.3 Basic Metadata and Properties associated with PERICLES Digital resources18
5.4 Dependencies .. 19
5.5 Giving semantics to dependencies .. 20
5.6 Operators ... 21
5.7 Ontology Metrics ... 23

6 LRM Primer .. 25

6.1 Creating Digital Resources .. 25
6.2 Attaching Descriptions to Digital Resources ... 25
6.3 Creating Dependencies ... 26
6.4 Creating Plans ... 27
6.5 Representing Operators ... 28
6.6 Deploying PROV Constructs ... 28

6.6.1 Activities .. 29
6.6.2 Activity Roles .. 29

6.7 Domain-specific LRM Example ... 30
6.7.1 Extending the LRM .. 30
6.7.2 Navigating the Ontology .. 33

7 Conclusion and Future Work ... 35

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 4 / 39

CƛƎǳǊŜǎ

Figure 1 Relationship of the two core LRM classes (Digital-resource and Dependency) with the
prov:Entity class. ... 9

Figure 2 Dual notions of dependency and change .. 11

Figure 3 Visual representation of a digital resource. .. 25

Figure п ±ƛǎǳŀƭ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ŀ ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜΩǎ ŘŜǎŎǊƛǇǘƛƻƴ .. 26

Figure 5 Visual representation of a dependency .. 27

Figure 6 Visual representation of a dependency .. 28

Figure 7 Visual representation of Tate items hierarchy (currently includes only Software-based
artworks). .. 31

 Figure 8 Visual representation of the specialization of the location descriptor and the identity for the
Tate domain. ... 31

Figure 9 Hierarchy of prov:Entity subclasses .. 32

Figure 10 Visualization of the software-based artwork sample instance. .. 33

Figure 11 ¢ƘŜ ά.ǊǳǘŀƭƛǎƳέ ǎƻŦǘǿŀǊŜ-ōŀǎŜŘ ŀǊǘǿƻǊƪ ǾƛŜǿŜŘ ǿƛǘƘ ǘƘŜ άhƴǘƻƭƻƎȅ .ǊƻǿǎŜǊέΦ 34

¢ŀōƭŜǎ

Table 1 Ontology metrics generated by Protégé. .. 23

Table 2 Class axioms metrics ... 23

Table 3 Object property axioms metrics. .. 24

Table 4 Data property axioms metrics. ... 24

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 5 / 39

DƭƻǎǎŀǊȅ

Abbreviation / Acronym Meaning

LRM Linked Resource Model

PROV W3C Recommendation (OWL ontology)

άLǘ ǇǊƻǾƛŘŜǎ ŀ ǎŜǘ ƻŦ ŎƭŀǎǎŜǎΣ ǇǊƻǇŜǊǘƛŜǎΣ ŀƴŘ ǊŜǎǘǊƛŎǘƛƻƴǎ ǘƘŀǘ Ŏŀƴ ōŜ
used to represent and interchange provenance information generated
in different systems and under different contexts. It can also be
specialized to create new classes and properties to model provenance
ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ŘƛŦŦŜǊŜƴǘ ŀǇǇƭƛŎŀǘƛƻƴǎ ŀƴŘ ŘƻƳŀƛƴǎΦέ ώмϐ

OWL Web Ontology Language (W3C)

W3C World Wide Web Consortium

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 6 / 39

1 Executive Summary

The current document introduces PERICLES deliverable 3.2: the Linked Resource Model. The Linked

Resource Model (LRM) is an OWL ontology that can be used to model dependencies between digital

resources handled by the PERICLES tools. This document is a companion to the ontology, to explain

the context as well as the guiding principles behind the LRM, and also to give indications about its

usage.

The LRM views digital ecosystem entities (data, metadata, policies, processes) as a set of evolving

linked resources, where typed semantics enable one to describe the dependencies among

heterogeneous resources. The main objective of the current LRM is to provide a principled way to

modelling digital resources and their dependencies in PERICLES, which in turn should contribute to

describing evolving digital ecosystems. To enable the above, the LRM formally defines that each

digital resource should necessarily have a physical extension (i.e. must be physically located

somewhere) and be represented through a unique id via the model. There can be a number of links

among digital resources representing different types of connection (e.g. simple provenance

information but also causality). The aim of the LRM is to allow modelling such links as dependencies

among the digital resources when required e.g. in the case that these enable us representing change

within the preservation environments. In that sense the LRM is developed as a domain-independent

meta-model. The LRM will be used to provide fundamental well-defined notions to domain-specific

models developed in WP2 and WP4, which in turn will represent specific application and domain

needs.

Dependencies in the LRM can be complex constructs, departing from the simple view of directed

links adopted in other models. First of all, we discovered that what makes a dependency semantically

different is the fact that its semantics are tightly connected to the underlying usage intention, so the

LRM provides specific classes to describe such information. Secondly, dependencies should not only

convey information related to the past (e.g. a file was produced by a specific piece of software) but

also model use of the data in the future, which may or may not require use of the application that

created it. Finally, dependencies should describe information related to the dynamics of digital

resources, including the preconditions (when is it required to trigger the propagation of a change?)

and the impact (how depending resources will be impacted) of a dependency. The LRM provides

concepts and mechanisms that can be used to model the above, as explained in the main body of the

document.

To illustrate how the LRM can be used as the basis for domain-specific extensions, an LRM primer is

provided in this document as well as an example related to one of the project use cases. Future

ŘŜƭƛǾŜǊŀōƭŜǎ όƛΦŜΦ 5нΦоΦн ά5ŀǘŀ ǎǳǊǾŜȅ ŀƴŘ ŘƻƳŀƛƴ ƻƴǘƻƭƻƎƛŜǎ ŦƻǊ ŎŀǎŜ ǎǘǳŘƛŜǎέ ŘǳŜ aон ŀƴŘ 5оΦр

άaƻŘŜƭƭƛƴƎ Ŏƻntextualised semantics" due M30), will include much more detailed domain-specific

ontologies extending the LRM. Furthermore, initial extensions to the LRM meta-model presented

here are being developed to satisfy needs of diverse approaches that may be adopted to calculate

the impact of changes (i.e. a preliminary model of weighted dependencies based on the LRM meta-

model are introduced in D4.1 and D5.1 deliverables). The source of the LRM is listed in extenso inside

this document (LRM is coded using the Turtle language), and can be downloaded separately as a zip

archive (see [2]).

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 7 / 39

2 Introduction & Rationale

2.1 Context of this Deliverable Production
This deliverable is the first one defined foǊ ²tоΣ άModelling Resource Dependencies in Evolving

Ecosystemsέ ŀƴŘ ŀǎ ǎǳŎƘ ŀŘŘǊŜǎǎŜǎ ƛǘǎ ŦƛǊǎǘ ƻōƧŜŎǘƛǾŜ ό5ƻ²ύΥ

Establish unifying models to describe heterogeneous resources and their dependencies (Linked

Resources Model). This includes defining a Link Semantics, in order to discriminate, type and classify

links based on their impact on the ecosystem.

As such, this deliverable focuses on a static view of the resources and their dependencies and does

not address yet change in the digital ecosystem, something planned to happen in later stages of the

project. Nevertheless, the LRM, as it is introduced in this document, has been developed with the

objective of serving as a principled foundation to describe and manage change over evolving

resources. Describing and managing change over evolving linked resources will be the focus of

subsequent WP3 work and deliverables.

2.2 What to expect from this Document
Formally speaking, Deliverable 3.2 is an ontology. The source code is available at [2] and can be used

via appropriate tools to model digital preservation systems. LRM instantiations can be checked for

well-formedness and consistency, thanks to the inherent properties of the Web Ontology Language

(OWL), on which the Linked Resource Model is based.

The current document per se is a companion document to this ontology, to explain the context as

well as the guiding principles behind the LRM, and also to give indications about its usage as a model

and meta-model.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 8 / 39

3 Rationales and Guiding Principles

The LRM views digital ecosystem entities (digital objects, policies, processes) as a set of evolving

linked resources, where typed semantics enable one to describe the dependencies among

heterogeneous resources. The LRM is foremost a model that should function as a fundamental

unified view that can be used to describe dependencies in different applications related to a

preservation context. The LRM introduces a link-focused view of such digital ecosystems - the change

of resources is tightly connected to the links that exist between these resources, while the properties

of such links are also subject to evolution.

The LRM should be understood as a domain-independent meta-model, to be eventually associated

with domain specific models that will provide the more detailed concepts needed by specific

application domains (of course, the needs are quite different for modelling say the Space and the Art

& Media ecosystems explored in WP2, even if we expect both to rely on the same fundamental

notion of dependency). Examples of domain-specific extensions that use the same LRM meta-model

ǿƛƭƭ ōŜ ƛƴŎƭǳŘŜŘ ƛƴ ŦǳǘǳǊŜ ŘŜƭƛǾŜǊŀōƭŜǎ όƛΦŜΦ 5нΦоΦн ά5ŀǘŀ ǎǳǊǾŜȅ ŀƴŘ ŘƻƳŀƛƴ ƻƴǘƻƭƻƎƛŜǎ ŦƻǊ ŎŀǎŜ

ǎǘǳŘƛŜǎέ ŘǳŜ aон ŀƴŘ 5оΦр άaƻŘŜƭƭƛƴƎ ŎƻƴǘŜȄǘǳŀƭƛǎŜŘ ǎŜƳŀƴǘƛŎǎϦ ŘǳŜ aолέύΦ bŜǾŜǊǘƘŜƭŜǎǎΣ ƛƴ ǘƘƛǎ

report we include a domain-specific example that illustrates how the LRM could be extended for a

specific domain (see LRM primer).

The LRM should be interoperable with other models, which are relevant to the digital preservation

area (for instance, we linked the PROV ontology (http://www.w3.org/TR/prov-o/) with the LRM to

record provenance information). We decided therefore to minimize the design assumptions and

constraints to this end. We put significant effort and thinking in reducing the core LRM classes to the

essential minimum. As will be presented in detail in section 5, this includes in addition to the

Dependency class (cf. Dependencies), classes defining the entities linked via a dependency (cf. Digital

Resources), as well as entities that allow creating, reading or deleting digital resources in the

ecosystem (cf. Operators). We have also defined a number of properties that allows us to

semantically define different dependency types (cf. Giving semantics to dependencies).

The LRM should be extensible. This is an obvious requirement as the planned usage of the LRM is that

of a fundamental ontology that should be further extended to represent specific domains and

applications. A guide explaining how the LRM can be extended is included in this deliverable along

with an example (cf. LRM primer).

Dependencies in the LRM should be able to capture usage intention. That is because, as we

discovered during our exploratory work, one of the main semantic differences between a

dependency and a link is that a dependency is always related to a usage intention, and therefore,

LRM dependencies always convey a description, be it abstract or concrete, of the intended

processing of the digital resources. Furthermore, they should be able to express n-ary oriented

relations (as one resource can be dependent on several other resources). Dependencies in the LRM

can therefore be complex constructs departing from the view of being expressed as simple binary

links between resources.

Another important point, captured by the LRM, relates to time, as two very different descriptive

mechanisms must coexist in order to describe either dependencies induced by past operations or

http://www.w3.org/TR/prov-o/

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 9 / 39

dependencies involving future actions over resources of particular types, which then represent

potentials rather than traces.

 For the first set of dependencies (talking about past actions), we decided to apply the

minimization principles explained above, and to reuse concepts from the PROV ontology

(http://www.w3.org/TR/prov-o/). PROV is a W3C recommendation for modelling the

provenance information. This is a precise and rich description of the resource dependencies

as the result of past activities. To this end we designed the LRM digital resources as

subclasses of the prov:Entity class, so that all the PROV vocabulary can be also applied to

LRM instances. Adopting the PROV constructs allows describing the provenance of any LRM

resource through the standardized PROV vocabulary, while, at the same time, the

provenance of dependencies can also be efficiently represented. Figure 1 illustrates the two

core LRM classes (Digital-resource and Dependency) and their relationship with the PROV

Entity class. The rest of the classes in the figure correspond to additional LRM constructs,

which are more thoroughly described in Section 5. Note that extending the PROV ontology

for deploying it within the LRM was not mandatory, it was a design choice, and the

adherence of the LRM to PROV can be reconsidered, if required, at some point. In particular,

as part of its future work, PERICLES will explore entity models which could further enrich the

LRM, esp. the Continuous Record Keeping model and its related RKMS metadata schema [3,

4].

Figure 1 Relationship of the two core LRM classes (Digital-resource and Dependency) with the prov:Entity class.

 For the second set of dependencies (talking about future actions, and therefore, about

potential change propagation) we decided to provide specific descriptive means, ranging

from informal, text-based explanations, down to formal, computer-oriented, descriptions of

how potential changes should be interpreted and propagated. Again, domain-specific models

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2Fprov-o%2F&sa=D&sntz=1&usg=AFQjCNGdj9x1EKNHquxVAlAsf0rZ-sCDQg

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 10 / 39

will play a major role at this point, and this will be part of our future investigations in

PERICLES.

Last, but not least, the LRM should aid in exploring further the fascinating problem of preserving

preservation systems, a concept coined as reflexive digital preservation. We consider that this issue is

central to digital preservation at large: how could we preserve digital materials for the long haul, if

the functionalities of the preservation system itself cannot be preserved? As a first step, we designed

the LRM having in mind that it could be used to model the future instances of PERICLES (hence,

particular descriptions of preservation systems) as a particular collection of digital resources, thus

leading to a form of reflexivity. In so doing, we expect that any significant progress in capturing key

ŀǎǇŜŎǘǎ ƻŦ ǘƘŜ ŘƛƎƛǘŀƭ ŜŎƻǎȅǎǘŜƳΩǎ ŘȅƴŀƳƛŎǎ ǿƛƭƭ ōŜƴŜŦƛǘ ǘƻ ǘƘŜ ƭƻƴƎ-term life of the infrastructure.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 11 / 39

4 State of The Art

4.1 Aims and objectives
In this section we discuss notions of dependency that could be relevant to modelling the

relationships between entities in the context of digital preservation and content lifecycle

management. Further, we also discuss some relevant approaches to ecosystem modelling using the

various notions of dependency found in the literature, and some of the information that can be

derived from such models.

The primary aim of expressing dependencies within PERICLES is to enable modelling of change within

the preservation environments. We realised at an early stage that dependency and change in this

context of PERICLES could be regarded as essentially dual notions.

Figure 2 Dual notions of dependency and change

¢ƘǳǎΣ άŜƴǘƛǘȅ ! ŘŜǇŜƴŘǎ ƻƴ Ŝƴǘƛǘȅ .έ ƛǎ ǊŜŦƭŜŎǘŜŘ ōȅ ǘƘŜ ƻǇǇƻǎe notion that a change in B would

necessarily cause some change in A. In modelling dependencies, we particularly wanted to

understand how dependencies could be combined to derive further dependencies (e.g. higher-order

dependencies). More generally, we were interested to understand, for a given notion of dependency,

what statements can be made about the properties of entities from the structure of their

dependency graph?

As described in Section 3, in order to model a digital ecosystem we need to consider dependencies

relating to past events, which can be captured at ingest. However, we were also interested in

dependencies related to future reuse of entities, in particular to support access to digital objects

stored in a repository. For example, a past dependency models the relationship between an output

data file and the piece of software that produced it. On the other hand, a future dependency may

model use of the data in the future, which may or may not require use of the application that created

it.

4.2 Generic properties
A number of generic properties of dependency were determined during our study, details of which

are presented in this section. A causal dependency [5] is the relation between an entity (the cause)

and a second entity (the effect), where the second entity is understood as a consequence of the first.

Such a concept enables the representation of events and change. Causal graphical models or directed

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 12 / 39

graphical models are also referred to as Bayesian Networks (BNs) and are used extensively for

modelling causal processes.

Transitivity is a property of dependencies that is often applied in database theory. A dependency is

transitive if A is dependent on B and B is dependent on C implies that A is dependent on C. This

property enables chaining of dependencies and inferences to be made on dependency graphs.

A dependency may be the conjunction or the disjunction of two dependencies. This enables logical

structures to be modelled. A conjunctive dependency requires all dependent entities to be present,

whereas a disjunctive dependency requires at least one of a set of entities to be present.

4.3 Preservation
The PREMIS Data Dictionary for Preservation Metadata is the international standard for metadata to

support the preservation of digital objects and ensure their long-term usability

(http://www.loc.gov/standards/premis/). The PREMIS Data Dictionary [6] defines preservation

metadata as the information a repository uses to support the digital preservation process.

Preservation metadata spans a number of the categories typically used to differentiate types of

metadata: administrative (including rights and permissions), technical, and structural. PREMIS

metadata is typically created at ingest into a repository or archive. PREMIS defines five semantic

units, namely Intellectual Entities, Objects, Events, Rights, and Agents, and a simple data model to

relate them. Three types of relationship are defined between objects: structural relationships,

derivation relationships and dependency relationships. From the PERICLES perspective, derivation

and dependency relationships are the most relevant. A derivation relationship results from the

replication or transformation of an object, where the intellectual content remains the same, but the

instantiation is different, such as a format conversion. A dependency relationship exists when one

object requires another to support its function, delivery, or coherence. Examples would include a

font, style sheet, DTD or schema that are not part of the file itself. Objects can also be related to

events through user-defined dictionaries of terms, and events can in turn be linked to agents that

performed those events, which can be either references to user roles or software applications. An

event represents an action that involves or impacts at least one object or agent, such as a format

transformation or migration.

The Open Provenance Model (OPM) [7], [8] introduces the concept of a provenance graph that aims

to capture the causal dependencies between entities. Three types of entities are defined in the

model:

 Artefacts represent an immutable piece of state, which may be embodied as a physical

object, or have a purely digital representation.

 Processes represent actions performed on or caused by artefacts, and resulting in new

artefacts.

 Agents represent contextual entities acting as a catalyst of a process, enabling, facilitating,

controlling, or affecting its execution.

Therefore, nodes, whether artefacts, processes or agents, can be connected by directed edges that

belong to one of the categories defined above, for instance to represent that an artefact was

generated by a process.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 13 / 39

In a preservation context, [9] defines notions of module, dependency and profile to model notions of

use by a community of users. A module is defined to be a software/hardware component or

knowledge base that is to be preserved, and a profile is the set of modules that are assumed to be

known (available or intelligible) by a user (or community of users). A dependency relation is then

defined by the statement that module A depends on module B if A cannot function without the

existence of B. For example, a README.txt file written in English depends on the availability of a

suitable text editor (e.g. Notepad). The paper demonstrates chaining of such use dependencies using

conjunctive and disjunctive relationships.

[10] also define the more specific notion of task-based dependency, which are expressed as Datalog

rules and facts. For instance, Compile(HelloWorld.java) denotes the task of compiling

HelloWorld.java. Since the compilability of HelloWorld.java depends on the availability of a compiler

(specifically a compiler for the Java language), this dependency can be expressed using a rule of the

form: Compile(X) :- Compilable(X,Y) where the binary predicate Compilable(X,Y) is used for

expressing the appropriateness of Y for compiling X. For example, Compilable(HelloWorld.java,

javac_1.6) expresses that HelloWorld.java is compilable by javac 1.6. This more formal approach

enables various tasks to be performed such as risk and gap analysis for specific tasks, possibly

considering contextual information, such as user profiles.

A Preservation Network Model [11] is a formal model for conceptualising the relationships between

resources within the scenario of a preservation objective. The preservation network model consists

of two types of components: digital objects and the relationships between them. A relationship

captures how two objects are related to one another in order to fulfil a specified preservation

objective whilst being utilised by a member of the designated user community (in the sense of OAIS).

Relationships can possess the attributes Function, Risks and Dependencies, Tolerance, and Quality

Assurance and Testing. A relationship may be the conjunction or the disjunction of two relationships.

4.4 Systems and software
In the Universal Modelling Language (UML) [12], a dependency is a relationship that shows that an

element, or set of elements, requires other model elements for their specification or

implementation. In UML there is a notion of a link, which is a relationship between instances of

classifiers. In contrast, a dependency is a modelling relationship between definitions. UML provides a

conceptual modelling approach for representing relationships between entities. For practical use in

PERICLES, such a wide-ranging definition would need to be constrained in order for meaningful

information to be extracted from a dependency graph.

The Conceptual Dependency Graph technique is introduced in [13]. The notion of dependency

defined relates to change by the linked entities. The dependencies have a set of attributes that

reflect defined properties of the dependencies.

Notions of dependency have been explored extensively in software engineering. A software

dependency is a directed relation between two pieces of code (such as expressions or methods).

There exist different kinds of dependencies: data dependencies between the definition and use of

values and call dependencies between the declaration of functions and the sites where they are

called. Dependency analysis is related to parallelism, i.e. whether sections of a program need to be

executed sequentially or can be run concurrently. Zimmerman [14] demonstrates that dependency

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 14 / 39

graph complexity can be a useful predictor for failures in software subsystems. The IEEE definition of

failure1 is the inability of a system or component to perform its required functions within specified

performance requirements. Dependency graphs can also be applied to bottleneck analysis [15]. The

maximal throughput of a system may be limited by the amount of available resources (e.g. the

number or speed of processors, the size of memory, the bandwidth of a bus). Dependency graphs

labelled with resource descriptions such as channel capacities can be applied to this problem.

Coupling is a term from software engineering to describe the degree of linkage between entities, in

this case software modules [16]. It is important consideration in the design and maintainability of

software systems. Two modules are independent if each can function completely without the

presence of the other ς i.e. they are decoupled or uncoupled. Highly coupled modules are joined by

many interconnections whereas loosely coupled modules are joined by few interconnections. Here,

an interconnection can be considered as a compilation or runtime linkage between the modules.

Common-environment coupling refers to the situation where a module writes into global data and a

different module reads from it (data or, worse, control).

Software change impact analysis ƛǎ ŘŜŦƛƴŜŘ ŀǎ άthe determination of potential effects to a subject

system resulting from a proposed software changeέ ώмтϐΦ ¢ƘŜ ōŀǎƛŎ ǇǊƛƴŎƛǇƭŜ ǳƴŘŜǊƭȅƛƴƎ ǘƘŜ ƴŜŜŘ ŦƻǊ

impact analysis is that a small change in a software system may affect many other parts of the

system. A direct impact occurs when the object affected is related by one of the dependencies that

fan-in/out directly to/from the Software Lifecycle Object (SLO). This type of impact is also called a

first level impact and can be obtained from the connectivity graph. An indirect impact occurs when

the object affected is related by the set of dependencies representing an acyclic path between the

SLO and affected object. This type of impact is also referred to as an N-level impact where N is the

number of intermediate relationships between the SLO and the affected object.

4.5 Probabilistic notions
Extending the concept of Bayesian network, an influence diagram [18] (also called a relevance

diagram, decision diagram or a decision network) is a compact mathematical representation of a

decision situation as a directed acyclic graph. Such diagrams can be used to visualise the probabilistic

dependencies in decision analysis and to specify the states of information for which independence

can be assumed to exist. Nodes are classified into decision nodes, uncertainty nodes, deterministic,

and value nodes (corresponding to a separable utility function). Functional arcs end in a value node,

and are used to model parameters of the utility function. Conditional arcs indicate probabilistic

relationships between the head and tail nodes of the arcs, and information arcs (ending in a decision

node) indicate a decision made when all the inputs are determined beforehand. Such diagrams may

be relevant to PERICLES, for instance for deriving decisions on preservation actions from a

dependency graph, although some dependencies may require also cyclic graphs e.g. representing

two documents that cannot be understood if they are not provided together.

A further probabilistic approach to dependency is through dependency networks [19], based on the

notion of partial correlation. The approach extracts causal topological relations between the nodes of

a directed network and provides an important step in the inference of causal activity relations. The

1
 IEEE Std 610.12-1990

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 15 / 39

partial (or residual) correlation [20] is a measure of the effect (or contribution) of a given node on the

correlations between another pair of nodes. Using this concept, the dependency of one node on

another node, can be calculated for the entire network.

4.6 Policy
Dependencies on and between policies are an important subject for PERICLES. Change-impact

analysis has been applied extensively in the area of access-control policies. The paper [21] considers

access policy change-impact assessment methods based on the XACML access policies. The analysis

consumes two policies that span a set of changes and summarises the differences between the two

policies. Users can not only examine the summary, but also query it and verify properties of the

change. This verification can happen even in the absence of formal properties about the system as a

whole (indeed, these properties may not even hold for the entire system). Attributes describe

subjects, actions, and resources. The approach uses a change-analysis decision diagram, termed

MTBDD (multi-terminal binary decision diagram) as the underlying representation of access-control

policies. MTBDDs are a form of decision diagram that map bit vectors over a set of variables to a

finite set of results.

4.7 Discussion
This survey uncovered a rich set of definitions for dependency relevant for PERICLES, depending on

the needs of the topic considered. The concepts defining a dependency range from ones that use

abstract notions and properties to the ones that require a concrete realisation of relevant entities.

We believe that a good meta-model should allow space for both views. In LRM we define specific

classes and metadata that allow abstract descriptions to co-exist with concrete realisations

representing the digital objects handled by the preservation system (as described in Section 5). For

instance, the Entity class can represent instances that have no concrete materialised form in the real-

world while the Digital-resource subclass is defined in the LRM as an entity that must have a digital

extension somewhere. Both of them can be related by instances of the Dependency class. Similarly,

we proposed a few dedicated metadata classes to capture additional semantics, ranging from textual

annotations up to more formalized descriptions (with, possibly, computer-based interpretations). As

the LRM is a meta-model, we expect that domain specific ontologies will enrich the semantics of LRM

classes in order to address domain specific modelling needs.

Another important point is the distinction expressed in the literature between conjunctive and

disjunctive dependencies, denoting an intrinsic feature of the dependency semantics. Therefore, we

decided to capture these two categories into the LRM by introducing the notion of co-dependency.

This notion is based on our choice to model dependency types as classes rather than properties (see

Dependencies). This means that we can also use standard logical constructs corresponding to class

disjunction and conjunction for the dependencies. Other intrinsic properties of dependencies are

inherited from standard relations (i.e. transitivity, symmetry), and will be expressed when we will

address the semantics of change, our next step in PERICLES.

Also of interest are the various graphical techniques for modelling (probabilistic) relationships. These

methods are interesting in the context of PERICLES and they will be more likely explored in specific

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 16 / 39

frameworks adapted to this kind of mathematical treatments e.g. based on linear algebra and matrix

transformation (see Conclusion and Future Work).

Interestingly, we have not identified in the SoTA approaches that identify and specifically address
reflexivity (as defined in Rationales and Guiding Principles). We believe this is a fruitful and promising
space to be explored in PERICLES through the LRM, and we paid particular attention to letting this
possibility open through our current design choices.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 17 / 39

5 Detailed Description of the LRM

This section provides an extensive and detailed description of the Linked Resource Model. The source

code of LRM is presented using the Turtle syntax (see [22]) and accessible through a zip archive [2].

For the ease of reading, the comments are stripped out from the following excerpts, but still present

in the associated code.

5.1 Ontology Preamble, Namespaces
The current release of the LRM only imports the PROV ontology [1], thus, the namespaces included

refer to the latter (namespace prov) and the LRM ontology itself (namespace pk):

5.2 Digital Resource and associated Descriptors
The concept of a digital resource in the LRM specialises the notion of entity as defined in PROV (An

entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects; entities may be

real or imaginary; [1]) by defining additional constraints. All digital resources that are considered as

objects to be represented in a PERICLES ecosystem model:

1. aǳǎǘ ōŜ ǇƘȅǎƛŎŀƭƭȅ ƭƻŎŀǘŜŘ ǎƻƳŜǿƘŜǊŜΦ ¢ƘŀǘΩǎ ŀ ƳŀƴŘŀǘƻǊȅ ŎƻƴŘƛǘƛƻƴΥ ƛǘǎ ŘƛƎƛǘŀƭ ǊŜŀƭƛǎŀǘƛƻƴΣ

or bitstream, must be accessible through one or more location descriptor(s).

2. Must be associated with exactly one LRM identifier that uniquely designates this object

inside the LRM instance, irrespective of other external identification mechanisms.

Those constraints are captured through the powerful owl:Restriction mechanism, as shown below:

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 18 / 39

As mentioned in section 4.7, the above modelling mechanism allows us to represent instances that
have no concrete materialised form in the real-world through the Entity class while the Digital-
resource subclass is defined in the LRM as an entity that must have a digital extension somewhere.
Both of them can be related by instances of the Dependency class.

5.3 Basic Metadata and Properties associated with
PERICLES Digital resources

We expect that location descriptors and identifiers will be further constrained, if required, by

domain-specific ontologies built on top of LRM to provide the precise descriptions that are relevant

to the application domain.

However, the pk:Description class is more detailed with respect to the information that can be

associated with it. The pk:intention property relates a description to a PROV entity that expresses

the intended usage of the resource (there can be many of them, as for instance, a user manual); the

pk:specification property is structurally similar, but expresses information on the resource itself, as

for instance its internal structure, or the convention it follows. We expect that these will be further

specialized and/or instantiated to respond to domain-specific needs.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 19 / 39

The following properties relate digital resource instances to their descriptors (location, identification,

intent description and specification)

5.4 Dependencies
A dependency instance may relate one or many entities to one or more others. To achieve this using

RDF, a binary predicate based model, we model Dependency as a class. We refer to the resulting

topology as co-dependency in the case that there is more than one entity linked to more than one

other entity (see an example of two entities being dependent on two other entities in the Figure

below). The pk:from and pk:to properties give an orientation to those co-dependencies.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 20 / 39

bƻǘŜ ǘƘŀǘ ǘƘŜ άǎǘŀƴŘŀǊŘέ ǎȅƳōƻƭƛŎ ǎŎƘŜƳŀ ƻŦ ŀ Ŏƻ-dependency d between entities Ai and Bi (Bo and B1

simultaneously depends on A0 and A1):

will be expressed this way using LRM:

The above modelling mechanism is important for a number of reasons: a) it allows us to cover the
cases of both conjunctive and disjunctive dependencies (for instance via specialised classes and/or
logical constructs such as owl:unionOf) that have been found to be important in the state-of-the-art
review (see section 4.7); b) it allows us to express n-ary oriented relations using RDF, a binary
predicate based model, one of the requirements mentioned in section 3; c) as pk:Dependency is
defined as a subclass of pk:Entity, it inherits the pk:intention and pk:specification properties that link
(explained in the section above). This allow us to model one of the most important points highlighted
in section 3Σ ƴŀƳŜƭȅ ǘƘŀǘ ά5ŜǇŜƴŘŜƴŎƛŜǎ ƛƴ ǘƘŜ [wa ǎƘƻǳƭŘ ōŜ ŀōƭŜ ǘƻ ŎŀǇǘǳǊŜ ǳǎŀƎŜ ƛƴǘŜƴǘƛƻƴέ.

5.5 Giving semantics to dependencies
Instances of pk:Plan allow detailed definition of the semantics of dependencies. This is what

corresponds to the fundamental intention behind any notion of dependency, as discussed in section

3 of this document (Rationales and design principles). pk:Plan is defined as a specialisation of the

pk:Description and prov:Plan classes (the PROV ontology proposes a class prov:Plan to describe

activities, although its semantics are not very precisely defined).

An instance of pk:Plan is characterized through the property pk:how and its sub-property

pk:implementedBy which specifies its organization. Whereas pk:how is an informal description,

pk:implementedBy is a computer oriented description (it associates an operator to realize the plan).

A0

A1

B0

B1

d

d

d

d

A0

A1

B0

B1

d

to

to

from

from

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 21 / 39

Note that nothing prevents one from using an unbounded combination of both properties to

characterize a plan.

When associated with a dependency, plans allow defining the two fundamental dimensions we

identified as important to model the dynamics of digital resources: the preconditions (when is it

required to trigger the propagation of a change?) and the impact (how depending resources will be

impacted).

The descriptive means introduced in this subsection allow us to link dependencies to change
propagation related notions. This should allow us to compute potential impact in an evolving digital
ecosystem (in accordance to Section 3).

5.6 Operators
An operator is an executable digital resource allowing creating, reading or deleting digital resources

in the ecosystem. The class pk:Operator is both a subclass of prov:SoftwareAgent and of pk:Digital-

resource. As such, an operator must be physically located somewhere and its digital extension can be

retrieved; an operator can be modelled and handled homogeneously as an intrinsic part of the digital

ecosystem, with dependencies and relevant metadata (this illustrates the claimed reflexivity of the

LRM).

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 22 / 39

We chose to categorize three families of operators based on their impact on the ecosystem. A

concrete operator must be specified by a combination of those (which is always possible, as they are

not declared as disjoint classes). A pk:Creator instance will create new digital resources and, on the

other hand, a pk:Destructor will delete resources. A pk:Reader instance will use resources and may

or may not change the ecosystem.

As an illustration, the class of XML validators will be a combination of pk:Reader (read the schema,

and the input document to be validated against it) and of pk:Creator, if it is configured to write a

validation report to be preserved as well (otherwise, the reporting can be ephemeral, as through a

computer screen, and it will just be a pk:Reader instance).

In order to model the information needed by an operator to perform, the LRM introduces three

properties, respectively for defining the input and output parameters, and for the configuration

parameters (for this one, the range of the property is not specialized at this stage; this should/can be

done in domain specific ontologies).

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 23 / 39

5.7 Ontology Metrics
This subsection presents some detailed metrics about the current version of the LRM ontology,

generated by the well-established Protégé2 ontology editor. Table 1 presents the summary of these

metrics, both for the core LRM as well as the LRM extension of PROV.

Table 1 Ontology metrics generated by Protégé.

¢ƘŜ ά5[ŜȄǇǊŜǎǎƛǾƛǘȅέ ƳŜǘǊƛŎ ǊŜŦŜǊǎ ǘƻ ǘƘŜ 5ŜǎŎǊƛǇǘƛƻƴ [ƻƎƛŎǎ ό5[ύ ǾŀǊƛŀƴǘ ŀŘƻǇǘŜŘ ōȅ ǘƘŜ ƳƻŘŜƭΦ

Description Logics [23] are a family of knowledge representation formalisms characterised by

logically grounded semantics and well-defined reasoning services. DL constitutes the underlying

formalism of ontologies and can appear in variants, depending on the adopted features. Indicatively,

ALCRIQ(D) encompasses the following features:

 The base language (AL) with complement of any concept allowed (C) - not just atomic

concepts.

 Limited complex role inclusion axioms, reflexivity and irreflexivity, role disjointness (R).

 Inverse properties (I).

 Qualified cardinality restrictions (Q).

 Use of datatype properties, data values or data types (D).

Table 2 shows a list of metrics regarding the class axioms currently defined in the ontology. As

illustrated, excluding subclass axioms, the LRM ontology is not particularly rich at the moment, which

is reasonable, since the primary objective at this stage was to provide the static conceptualisation

(classes, properties, individuals) necessary to represent the LRM-related dependencies. However,

most of the complexity will be introduced in domain modeling activities.

Table 2 Class axioms metrics

As shown in Table 1 the LRM ontology contains a set of object and data properties for making

assertions about the individuals described in the ontology. Further statistics about the ontology

properties are shown in Tables 3 and 4, where already a number of axioms have been used to ensure

the precise capturing of the property semantics via the use of domain and range property axioms.

2
 Protégé ontology editor: http://protege.stanford.edu/

http://protege.stanford.edu/

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 24 / 39

Table 3 Object property axioms metrics.

Table 4 Data property axioms metrics.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 25 / 39

6 LRM Primer

One of the main guiding principles of the LRM was that it should extensible (see section 3). This

section presents a selection of examples demonstrating how the LRM can be deployed for domain

modelling. However, the content of this section is strictly for demonstration reasons, as it is strongly

recommended to avoid using the core LRM for domain modeling purposes; instead, one should first

create a domain-specific ontology, by extending the LRM and specializing its core constructs.

6.1 Creating Digital Resources
As described in Section 5.2, all LRM digital resources (i.e. objects of type pk:Digital-resource) must

have: (a) exactly one identifier, and, (b) one or more location descriptors. These requirements are

satisfied via two LRM-specific properties: pk:identification and pk:location, respectively. These two

ǇǊƻǇŜǊǘƛŜǎ ŀǊŜ άobject propertiesέΣ ƳŜŀƴƛƴƎ ǘƘŀǘ ǘƘŜƛǊ ǾŀƭǳŜǎ ǿƛƭƭ ōŜ ƻōƧŜŎǘǎ ƻŦ ǘȅǇŜ pk:Identity and

pk:Location-descriptor, respectively. The following is a Turtle fragment describing a digital resource

άŘƛƎǊŜǎ-мέΥ

digres-1 rdf:type pk:Digital-resource ;
pk:identification id-1 ;
pk:location loc-1 .

id-1 rdf:type pk:Identity ;
prov:value "ID001"^^rdfs:Literal .

loc-1 rdf:type pk:Location-descriptor ;
prov:value "C:\ \ repository"^^rdfs:Literal .

The property prov:value provides a literal value that is a direct representation of an entity (the

domain of the property is prov:Entity). Figure 3 illustrates a visual representation of the above digital

resource, generated with the help of the Protégé OntoGraf plugin3.

Figure 3 Visual representation of a digital resource.

6.2 Attaching Descriptions to Digital Resources
Digital resources can optionally be associated with descriptions (i.e. objects of type pk:Description)

that give information about a digital resource (or an entity in general): why it exists and what it is.

3
 Protégé OntoGraf plugin: http://protegewiki.stanford.edu/wiki/OntoGraf

http://protegewiki.stanford.edu/wiki/OntoGraf

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 26 / 39

Two optional object properties are defined for this: pk:intention and pk:specification (see Section

5.3). Similarly to the previous example, two new objects of type pk:intention and pk:specification,

respectively, have to be created, as illustrated in the following Turtle fragment:

desc-1 rdf:type pk:Description ;
pk:describes digres-1 ;
pk:intention int-1 ;
pk:specification spec-1 .

int-1 rdf:type prov:Entity ;
prov:value "This digital resource was created for ..."^^rdfs:Literal .

spec-1 rdf:type pk:Entity ;
prov:value "The specifications for this digital resource are ..."^^rdfs:Literal .

Descriptions are attached to digital resources through the pk:describes property (which is the inverse

of pk:describedBy). Figure 4 ƛƭƭǳǎǘǊŀǘŜǎ ŀ Ǿƛǎǳŀƭ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ŀ ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜΩǎ ŘŜǎŎǊƛǇǘƛƻƴΦ

Figure 4 Visual representation of a ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜΩǎ ŘŜǎŎǊƛǇǘƛƻƴ

6.3 Creating Dependencies
Dependencies are created via the pk:Dependency class (or an appropriate domain-specific

specialization/subclass). Since dependencies in LRM are oriented, their two most important elements

are object properties pk:from and pk:to, which relate instances of prov:Entity to each other (see

{ŜŎǘƛƻƴ рΦпύΦ CƻǊ ƛƴǎǘŀƴŎŜΣ ǘƘŜ ŘŜǇŜƴŘŜƴŎȅ ƻŦ ǘƘŜ ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜǎ άŘƛƎǊŜǎ-мέ ŀƴŘ άŘƛƎǊŜǎ-нέ ƻƴ

ŀƴƻǘƘŜǊ ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜ άŘƛƎǊes-оέ ǿƻǳƭŘ ōŜ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎΥ

dep-1 rdf:type pk:Dependency ;
pk:from digres-1 ,
 digres-2 ;
pk:to digres-3 .

¢Ƙƛǎ ŘŜǇŜƴŘŜƴŎȅ ǊŜŀŘǎ ŀǎΥ άResources digres-1 and digres-2 depend on digres-3έ ŀƴŘ ƛǎ Ǿƛǎǳŀƭƭȅ

represented as illustrated in Figure 5.

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 27 / 39

Figure 5 Visual representation of a dependency

bƻǘŜ ǘƘŀǘ ŀƭƭ ǘƘǊŜŜ ǎŀƳǇƭŜ ŘƛƎƛǘŀƭ ǊŜǎƻǳǊŎŜǎ όάŘƛƎǊŜǎ-мέΣ άŘƛƎǊŜǎ-нέΣ άŘƛƎǊŜǎ-оέύ ǎƘƻǳƭŘ ƘŀǾŜ ǊŜǎǇŜŎǘƛǾŜ

identifier and location descriptors, which are, however, omitted from the figure, in order to reduce

complexity. A more concrete (i.e. domain-ŘŜǇŜƴŘŜƴǘύ ŜȄŀƳǇƭŜ ƻŦ ŀ ŘŜǇŜƴŘŜƴŎȅ ǿƻǳƭŘ ōŜ άa piece of

compiled Java bytecode depends on the respective Java source code in the case one wants to modify

the bytecode object accordinglyέΣ ǿƘƛŎƘ ŎƻǳƭŘ ōŜ ǊŜǇǊŜǎŜƴǘŜŘ ƛƴ ¢ǳǊǘƭŜ ŀǎ ŦƻƭƭƻǿǎΥ

java-src rdf:type pk:Digital-resource . # source code

java-byte rdf:type pk:Digital-resource . # bytecode

java-dep rdf:type pk:Compilation-Dependency ;
pk:from java-src ;
pk:to java-byte .

Note that both the Java source code as well as the bytecode are registered as digital resources.

6.4 Creating Plans
As already stated (see Section 5.5), plans offer the means for giving semantics to dependencies. Plans

are used for representing the preconditions and impact of a dependency (see Section 5.5) and this is

ŀŎƘƛŜǾŜŘ ōȅ άŀǘǘŀŎƘƛƴƎέ ǘƻ ŜŀŎƘ ŘŜǇŜƴŘŜƴŎȅ ŀ ŎƻǳǇƭŜ ƻŦ pk:Plan instances via object properties

pk:precondition and pk:impact, respectively. For instance, supǇƻǎŜ ǘƘŀǘ ǘƘŜ ŘŜǇŜƴŘŜƴŎȅ άƧŀǾŀ-ŘŜǇέ

introduced in the previous example has the following precondition and impact:

 precondition: The compilation of the Java source code depends on the version of the Java

compiler on the host machine.

 impact: The code may no longer compile.

¢ƘŜ ŦƻƭƭƻǿƛƴƎ ¢ǳǊǘƭŜ ŦǊŀƎƳŜƴǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǇǊŜŎƻƴŘƛǘƛƻƴ ŀƴŘ ƛƳǇŀŎǘ ƻŦ ŘŜǇŜƴŘŜƴŎȅ άƧŀǾŀ-ŘŜǇέΥ

java-dep pk:precondition java-dep-prec ;
pk:impact java-dep-imp .

java-dep-prec rdf:type pk:Plan ; # precondition
 pk:implementedBy jc .

java-dep-imp rdf:type pk:Plan ; # impact
 pk:specification άŎƻŘŜ Ƴŀȅ ƴƻǘ ŎƻƳǇƛƭŜέ Φ

jc rdf:type prov:SoftwareAgent . # compiler

DELIVERABLE 3.2
LINKED RESOURCE MODEL

© PERICLES Consortium Page 28 / 39

6.5 Representing Operators
As already stated, plans are implemented by operators. The core LRM features three (3) types of

operators: creators, readers, destructors (see Section 5.7). For instance, the two agents from the

ǇǊŜǾƛƻǳǎ ŜȄŀƳǇƭŜ όάƧŎέ ŀƴŘ άƧǊŜέύ ŎƻǳƭŘ ōŜ ǎǇŜŎƛŦƛŜŘ ōƻǘƘ ŀǎ ǊŜŀŘŜǊǎ ŀƴŘ ŎǊŜŀǘƻǊǎΥ

 ¢ƘŜ WŀǾŀ ŎƻƳǇƛƭŜǊ άƧŎέ ǊŜŀŘǎ ŀ ǇƛŜŎŜ ƻŦ WŀǾŀ ǎƻǳǊŎŜ ŎƻŘŜ όƛƴǇǳǘύ ŀƴŘ ŎǊŜŀǘŜs a corresponding

piece of Java bytecode (output).

 ¢ƘŜ Ww9 άƧǊŜέ ǊŜŀŘǎ ŀ ǇƛŜŎŜ ƻŦ WŀǾŀ ōȅǘŜŎƻŘŜ όƛƴǇǳǘύΣ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ƻŦ ǿƘƛŎƘ Ƴŀȅ ƭŜŀŘ ǘƻ ǘƘŜ

creation of additional digital resources (output) within the ecosystem (e.g. creating a new

text file).

In Turtle syntax, this could be represented by the following fragment:

jc rdf:type pk:Creator ,
 pk:Reader ;
pk:inputParameter java-src ;
pk:outputParameter java-byte .

jre rdf:type pk:Creator ,
 pk:Reader ;
pk:inputParameter java-byte ;
pk:outputParameter text-file-1 .

text-file-1 rdf:type pk:Digital-resource .

The above fragment is visually represented as illustrated in Figure 6.

Figure 6 Visual representation of a dependency

6.6 Deploying PROV Constructs
Since the LRM in its current implementation is an extension of PROV, several constructs of the latter

can be deployed in parallel with LRM constructs. This sub-section briefly introduces how some of the

key PROV constructs can be used in practice. It should be reminded that the core of the LRM

(identified by the pk: prefix) could be made independent from PROV, enabling one to extend the

core LRM to their pre-existing ontology of choice.

